Artigo Gentilmente cedido pelo Eng Pedro Jacobi que pode ser visualizado no formato original em http://www.geologo.com.br/aguahisteria.asp

A ÁGUA NA TERRA ESTÁ SE ESGOTANDO? É VERDADE QUE NO FUTURO PRÓXIMO TEREMOS UMA GUERRA PELA ÁGUA?

por Pedro Jacobi

Em vista desta histeria coletiva que se alastra pela mídia mundial contaminando a todos os menos avisados nós resolvemos elucidar uma série de pontos cuja divulgação está causando esta enorme celeuma.

O Alarmismo

O relatório anual das Nações Unidas faz terríveis projeções para o futuro da humanidade. A ONU prevê que em 2050 mais de 45% da população mundial não poderá contar com a porção mínima individual de água para necessidades básicas. Segundo dados estatísticos existem hoje 1,1 bilhão de pessoas praticamente sem acesso à água doce. Estas mesmas estatísticas projetam o caos em pouco mais de 40 anos, quando a população atingir a cifra de 10 bilhões de indivíduos.

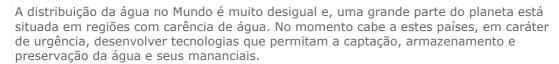
A partir destes dados projeta-se que a próxima guerra mundial será pela água e não pelo petróleo.

Qual o volume de água potável disponível?

• Os dados que são utilizados pela mídia mundial são: De toda a água disponível na terra **97,6%** está concentrada nos oceanos (tabela 1.1). A água fresca corresponde aos 2,4% restantes. Você acha 2,4% pouco? Então ouça isso: destes 2,4% somente 0,31% não estão concentrados nos pólos na forma de gelo. **Resumindo: de toda a água na superfície da terra menos de 0,02% está disponível em rios e lagos na forma de água fresca pronta para consumo**.

Assustado? A realidade não é tão terrível quanto estes números parecem apontar. Em sua grande maioria estes números estão sendo manipulados, por alguns, de forma a criar uma verdadeira histeria coletiva em relação a água.

Local	Volume (km3)	Percentual do total (%)
Oceanos	1.370.000	97,61
Calotas polares e geleiras	29.000	2,08
Água subterrânea	4.000	0,29
Água doce de lagos	125	0,009
Água salgada de lagos	104	0,008
Água misturada no solo	67	0,005
Rios	1,2	0,00009
Vapor d'água na atmosfera	14	0,0009
Fonte: R.G. Wetzel, 1983.		tabela 1.1


O que está sendo feito em relação a isso?

- Em decorrência das notícias alarmistas vários países já começam a se preparar para a venda de grandes volumes de água, pensando em lucrar em cima da necessidade dos outros. No Canadá, por exemplo, a preocupação já é com a legislação que não permite a venda de grandes volumes como é feito com o petróleo.
- A população se prepara para tempos ruins, onde o consumo de água deverá ser significativamente reduzido. Existe uma tendência mundial de culpar e perseguir aqueles que, mesmo pagando, consomem mais.

Neste relatório iremos fornecer alguns dados, cientificamente embasados, que irão adicionar uma nova perspectiva àquela gerada pelas projeções catastróficas acima.

As reservas mundiais de água

Em primeiro lugar é importante falar que nós Brasileiros, no que diz respeito a água, estamos muito bem, obrigado. O Brasil, Rússia, China e Canadá são os países que basicamente "controlam" as reservas de água fresca mundial.

Antes de nos aprofundarmos nesse assunto é muito importante dizer que apesar de termos a impressão de que a água está desaparecendo, a quantidade de água na Terra é **praticamente invariável há centenas de milhões de anos**. Ou seja a quantidade de água permanece a mesma o que muda é a sua distribuição e seu estado.

CICLO HIDROLÓGICO: clique na foto para aumentar

O causador deste fenômeno é um processo chamado **Ciclo Hidrológico**, através do qual as águas do mar e dos continentes se evaporam, formam nuvens e voltam a cair na terra sob a forma de chuva, neblina e neve. Depois escorrem para rios, lagos ou para o subsolo formando os importantes aquíferos subterrâneos, e aos poucos correm de novo para o mar mantendo o equilíbrio no sistema hidrológico do planeta (clique na foto para detalhes).

A água somente passa a ser perdida para o consumo basicamente graças à **poluição e à contaminação**, <u>nunca</u> <u>devido ao assoreamento como muitos dizem.</u> São estes fatores que irão inviabilizar a reutilização, causando uma redução do volume de água aproveitável da Terra.

O Brasil é altamente privilegiado em termos de disponibilidade hídrica global. Nós temos um volume médio anual de 8.130 km3, que representa um volume per capita de 50.810 m3/hab.ano. Estes números devem ser encarados com uma certa reserva pois a distribuição de água no Brasil, como veremos adiante, também é bastante irregular. A Amazônia, o lugar mais rico em água potável superficial de todo o Planeta está distante dos grandes centros urbanos nacionais.

Conclusão 1: O gerenciamento da água é que deve ser considerado o grande problema e não seu "desaparecimento". Desta forma quando o Governo tenta culpar o usuário pelo consumo excessivo de água está, na realidade, confessando a sua incapacidade em suprir este excesso de água no presente e, possivelmente, no futuro. O cidadão pode e deve evitar perdas desnecessárias do produto, mas não deve, sob hipótese nenhuma, ser responsabilizado pela falta de água. A única forma de inviabilizar a água para o consumo é a contaminação da mesma por poluentes. Portanto cabe, mais uma vez as autoridades criar leis severas que punam exemplarmente aqueles que poluem e contaminam as águas.

Como é consumida a água?

O consumo de água no planeta é que ditará as políticas de gerenciamento da água.

O consumo de água per capita varia de país para país e de lugar para lugar. Alguns exemplos abaixo.

PAÍS	CONSUMO DE ÁGUA PER CAPITA
Escócia	410 litros/pessoa/dia
Estados Unidos/Canadá	300 litros/pessoa/dia
Austrália	270 litros/pessoa/dia
Brasil RJ	140 litros/pessoa/dia
Brasil MG	124 litros/pessoa/dia
Brasil DF	225 litros/pessoa/dia
Brasil Norte	140 litros/pessoa/dia

Na tabela acima observamos que o consumo é significativamente maior nos países desenvolvidos quando comparados ao Brasil. No Brasil o maior consumo per capita é observado no Distrito Federal que é ainda 33% menor que o **consumo médio** do Canadá.

O principal uso de água é, sem dúvida nenhuma, na **agricultura**. As águas públicas, que precisam tratamento e transporte tem uma distribuição diferente. Aproximadamente 60% desta água será usada para fins domésticos, 15% para fins comerciais e 13% em indústrias. O restante para fins públicos e outras necessidades.

No Brasil o consumo de água per capita multiplicou-se por mais de dez ao longo do século 20. Mesmo assim existem milhões de cidadãos sem acesso a água de qualidade. Da mesma forma milhões de casas não tem rede de esgotos.

É necessário um investimento significativo, por parte das autoridades, neste setor. Se este investimento não for efetuado, em pouco tempo teremos o caos social derivado pela falta d'água. Neste caso o grande culpado será, mais uma vez, a falta de previsão e de investimentos do setor público e não o cidadão.

Já, nos outros países onde além do problema de gerenciamento existe a falta de reservas de água o problema poderá ser, realmente, gravíssimo no futuro próximo.

A água no Brasil

O nosso país, conforme dito, é privilegiado. Temos gigantescas reservas de água praticamente em todos os Estados com exceção dos situados no semi-árido do Nordeste.

Isso não é nenhuma novidade!

O que a maioria não sabe é que existem reservas simplesmente gigantescas, **maiores** ainda que aquelas contidas nos rios e lagos de superfície. São as reservas dos aquíferos subterrâneos.

A grande reserva Brasileira de água: os aquíferos subterrâneos

Lembre-se que no ciclo hidrológico, uma parte da água superficial penetra nas rochas permeáveis formando vastos lençóis freáticos também chamados de aquíferos.

O maior aquífero conhecido do mundo, **O AQUÍFERO GUARANI**, está localizado em rochas da Bacia Sedimentar do Paraná e ocupa uma área de mais de 1,2 milhões de km2. Este super-aquífero estende-se pelo Brasil, (**Goiás**, **Mato Grosso do Sul, São Paulo, Paraná, Santa Catarina e Rio Grande do Sul** com 840.000 Km²), Paraguai (58.500 Km²), Uruguai (58.500 Km²) e Argentina, (255.000 Km²).

Este aqüífero pode conter **mais de 40 mil quilômetros cúbicos de água** o que é superior a toda a água contida nos rios e lagos de todo o planeta. Somente este fato poderia significar que o abastecimento de água Brasileiro estaria garantido , sem reciclagem e reaproveitamento por milhares e milhares de anos...imagine então se fizermos uma reciclagem, tratamento e reaproveitamento eficientes...teremos água para todo o sempre.

Estima-se que por ano o Aquífero Guarani receba 160 quilômetros cúbicos de água adicional vindas da

superfície. Este é um ponto que pode ser considerado um problema ou uma solução. Se estas águas superficiais estiverem contaminadas o aquífero será terrivelmente atingido.

A água do Guarani já abastece muitas comunidades nos Estados do Sul-Sudeste do País.

Reservatórios subterrâneos de água potável são conhecidos em todos os terrenos e regiões do Brasil. Mesmo no semi-árido do Nordeste existem gigantescos reservatórios. Somente um deles possui um volume de 18 trilhões de metros cúbicos de água disponível para o consumo humano, volume este suficiente para abastecer toda a atual população brasileira por um período de, no mínimo, 60 anos isso sem reciclagem ou reaproveitamento desta água.

O potencial de descoberta de novos aquíferos, inclusive maiores do que o próprio **Guarani** é muito grande. É só lembrar que **3/4 dos 8,5 milhões de quilômetros quadrados da superfície Brasileira correspondem a Bacias Sedimentares como a do Paraná**. Todas estas bacias contém unidades sedimentares porosas e permeáveis que podem formar excelentes aquíferos de dimensões continentais.

Em sondagens profundas (>400m) na Bacia do Amazonas (PA) podemos constatar esta verdade. Intersectamos um gigantesco aqüífero com artesianismo que até hoje fornece água ininterrupta à comunidade da Transamazônica. Este reservatório, ainda não mapeado, foi intersectado em poucos furos distantes dezenas de quilômetros o que dá uma idéia de seu volume.

Mais interessante ainda é que os aquíferos tem uma água pura, sem poluentes ou contaminantes podendo ser utilizada diretamente para consumo. Em outras palavras uma **água barata e pura** que não necessita de tratamento.

Conclusão 2: O Brasil tem, provavelmente, as maiores reservas de água do mundo. Estas reservas estão distribuídas em todo o Território Nacional. O mapeamento dos principais mananciais subterrâneos do Brasil deve ser uma prioridade. Mais ainda é fundamental que seja monitorada a qualidade da água que penetra nos aquíferos evitando, por intermédio de pesadas multas, a poluição e contaminação desta água o que pode comprometer um dos maiores bens do País.

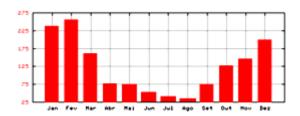
Reservas alternativas de água

A única maneira de acabar com a água da Terra é acabando com o planeta.

A água está presente em praticamente todos os ambientes conhecidos. Na atmosfera, na superfície, nos aquíferos subterrâneos, nos seres vivos, nas emanações vulcânicas e também na maioria das rochas.

As rochas da crosta terrestre são ricas em minerais hidratados. Se alguém tiver interesse em calcular a quantidade de água encerrada na estrutura de minerais formadores de rocha verá que o volume é simplesmente imenso. É lógico que , nas condições atuais essas reservas são apenas teóricas, já que o custo da extração desta água será muito elevado e anti-econômico. No entanto esta tecnologia poderá ser útil na conquista de planetas com pouca água como Marte.

Soluções mais óbvias que estão sendo ou serão praticadas em breve são:


Dessalinização: A dessalinização das águas do mar e de aquíferos subterrâneos com salinidade elevada será a solução para vários países que tenham o capital, a tecnologia e o acesso à água salgada. Infelizmente a água potável gerada por estas usinas ainda será um produto caro e, naturalmente inacessível a muitos.

Tratamento de águas servidas: No processo de gerenciamento de águas este é um ponto fundamental. Os países mais desenvolvidos estão investindo pesado nesse campo. No Brasil cidades como Brasília estão se destacando no tratamento e reaproveitamento dessas águas.

Captação das águas da chuva: Em países com estações chuvosas é possível maximizar os reservatórios e estoques de água pelo uso inteligente da água de precipitação.

Por exemplo: somente a água que é precipitada na Grande S. Paulo durante os meses de janeiro a março é superior em volume a todo o consumo desta cidade em um ano. Este exemplo é válido para quase todos os locais

onde existem estações chuvosas.

Precipitação média mensal (mm) em São Paulo no período 1961-1990

Conclusão final: A água da terra não está acabando. Na realidade a água da superfície terrestre pode estar aumentando pela adição de água vulcânica. O valor da água deverá aumentar consideravelmente pois existem países carentes que terão que utilizar tecnologias caras ou importar água de países ricos. O Brasil não deverá ter problema de falta de água se os governantes investirem adequadamente no gerenciamento, armazenagem, tratamento e distribuição das águas. Evitar a poluição das águas deve ser considerada a prioridade número um dos Governantes.